

SUGAR BASED CHEMISTRY

2015

ABOUT AVA BIOCHEM

- Founded: 2012
- Subsidiary of AVA-CO2 Switzerland Ltd. founded in 2009
- 100% privately owned
- AVA Group has 39 employees
- Core technology: Hydrothermal Treatment Process (HTP)
 - > AVA Biochem CH-Muttenz
 - ➤ Biochem-1 Plant for 5-HMF (2014)
 - > AVA-CO2 Research GmbH DE-Karlsruhe
 - > HTC-0 Plant for "Waste Biomass to Energy" (2010)
- Core technology: Hydro Thermal Process (HTP)
- Process takes place in aqueous solution (water as solvent)
- Fully scalable technology: bulk production within reach
- 5-HMF in crystalline form or in aqueous solution in various purities available today

BIO-BASED CHEMISTRY

Platform Chemical 5-HMF

Bio-based Plastics Bio-based Polymers Pharma

PERFORMANCE CARBONS

Powder Activated Carbon Carbon Black

Adsorption of Micro Pollutants CO₂-Reduction

ENERGY & UTILISATION

Sewage Sludge Biogenic Residues

Energy Efficiency Phosphorous-Recovery

RENEWABLE BIOMASS

HYDROTHERMAL PROCESS AS PLATFORM TECHNOLOGY

HISTORY – HTC Technology

Nobel Prize Mr. Bergius

1931

Kyoto Protocol

1997

HTC-0

2010

Visit of the German Federal **Environmental Minister**

EU-Projects: X-Gate & BioBoost

2012

Phosphorous recovery Activated carbon

2014

2. Oil crisis

2009

Founding of AVA-CO2;

Co-operation KIT

ZHAW/BAFU Study I

2011

Patent applications

HTC-Study Senate Berlin

ZHAW/BAFU Study II

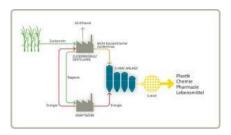
2015

First commercial **HTC-Projects**

Autoclaves

2011

KIT Test-Installation


EU Project: BioConSepT

2012

AVA Biochem
Plant Construction

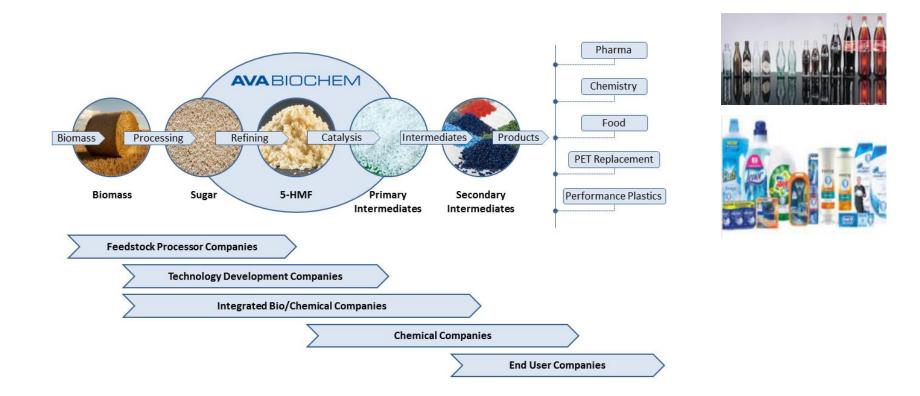
2013

Scale-up HMF-FDCA-plant

Future

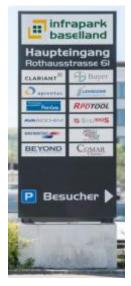
12.2011

Founding AVA Biochem Muttenz, Switzerland



01.2014

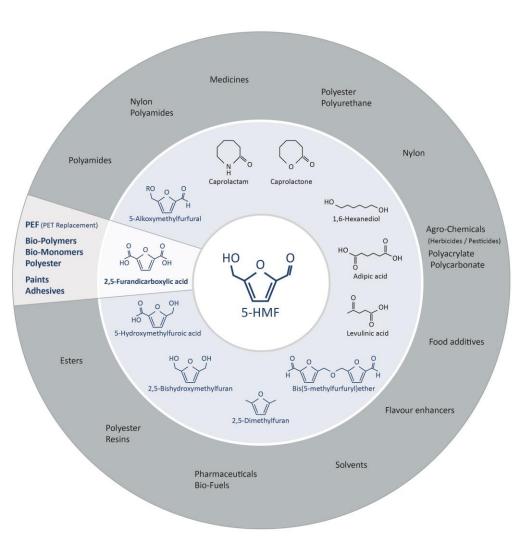
AVA Biochem BSL AG
Start of 5-HMF Production, 20 t/y crystals or 300 t/y in water



AVA Biochem opens the door to sustainability & new bio-based materials

WORLDWIDE FIRST DEDICATED 5-HMF PRODUCTION SITE

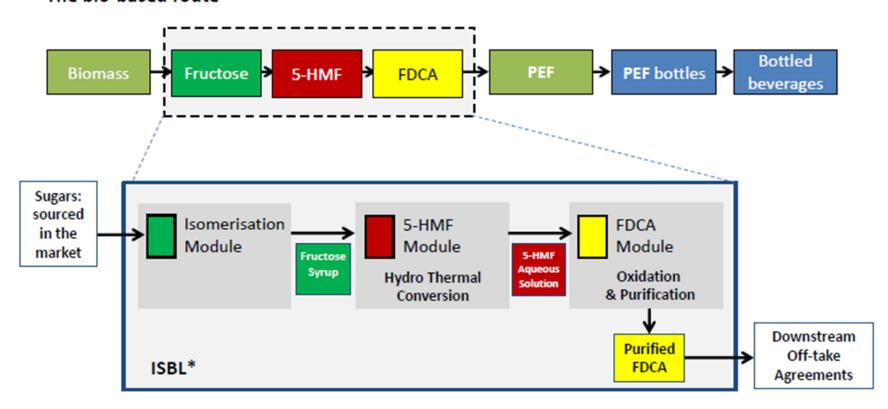
- Biochem-1 plant operated by AVA Biochem since January 2014
- Processing reliable, high quality 5-HMF
- Continuous hydrothermal process (high pressure chemistry) → not fermentation nor catalysis
- Process takes place in aqueous solution!
- Fully scalable technology: bulk production within reach



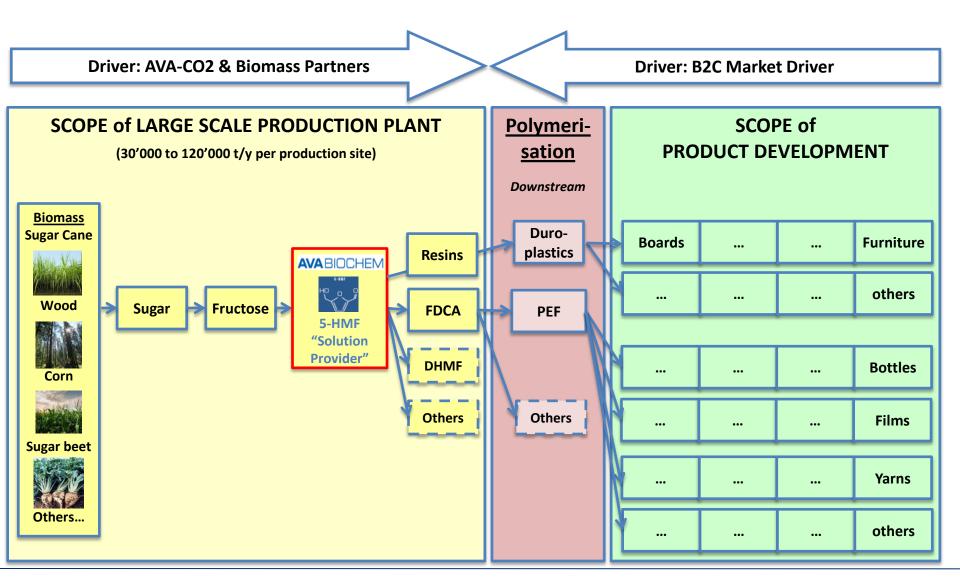
5-HMF - PERFORMANCE ADVANTAGES

5-HMF is the starting point for many future bio-based products.

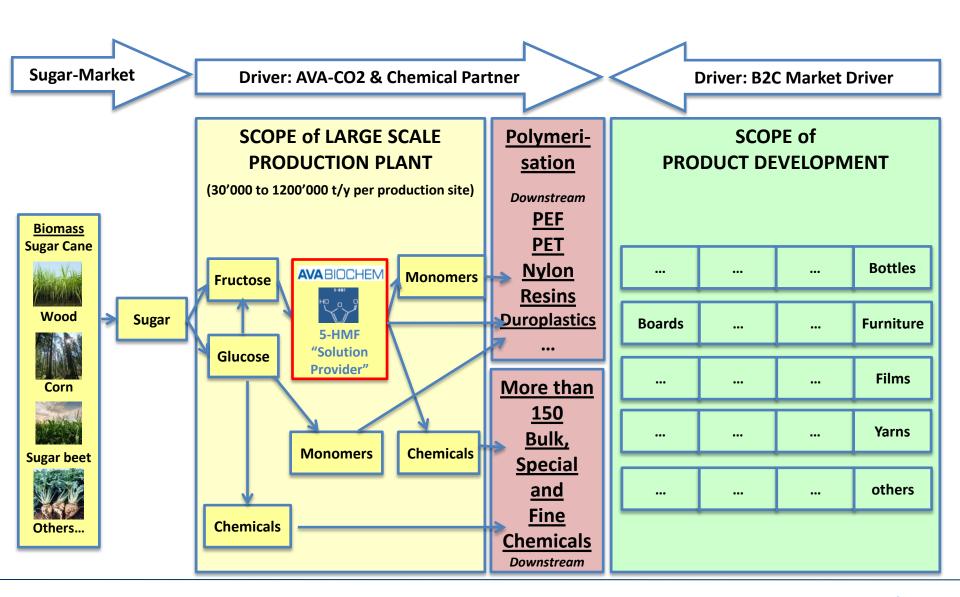
- used as performance ingredient in food, agro, pharma
- converted to at least 150 relevant chemicals
- Converted to monomers for at least 20 different polymers → e.g. PEF
- used to replace formaldehyde in furniture production

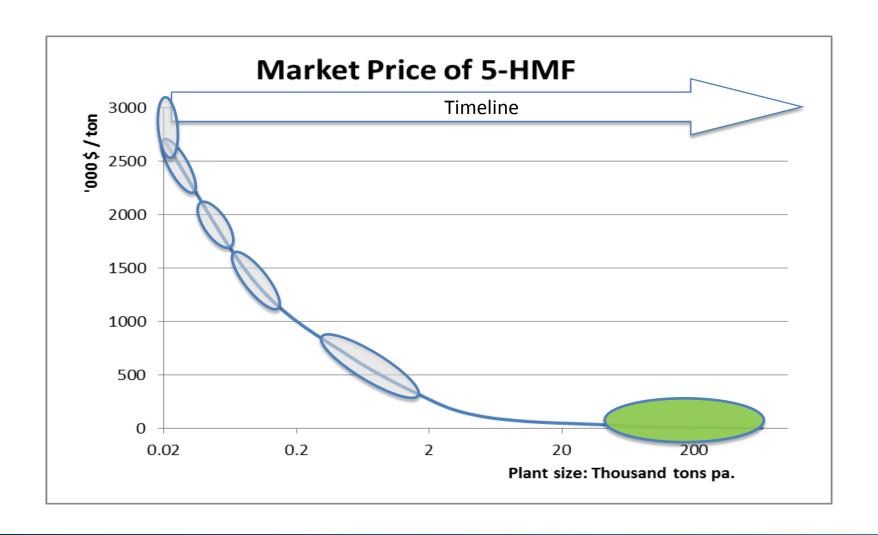


Performance	PEF	PET
Gas permeability 02	6-10 x better than PET	
Gas permeability CO2	2-5 x better than PET	
Moisture resistance H20	2 x better than PET	
CO2-Footprint	50% better than PET	
Glass transition temperature TG	84-90° C	67-81° C
Melting point Tm	195-265° C (stable up to 325° C	250-270° C
Density	1.43 g/cm3	1.36 g/cm3
Young's modulus E	3.0-3.5 GPa	2.1-3.1 GPa
Field strength	90-100 MPa	50-60 MPa

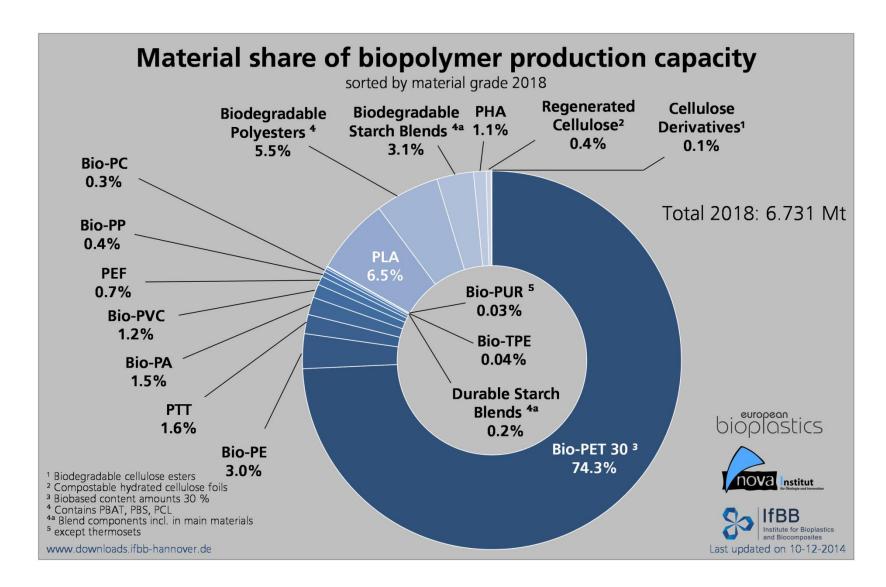

The bio-based route

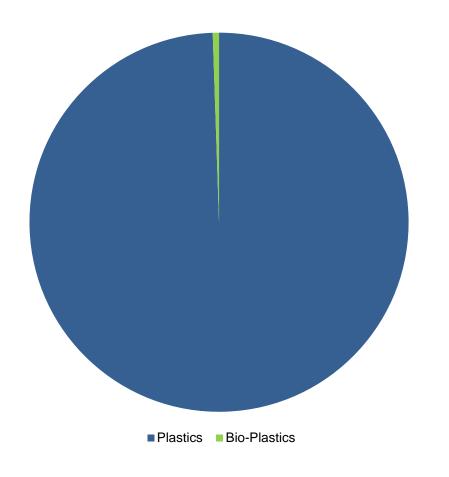
^{*} Inside Battery Limits


OPTION 1: «SUGAR-CO» – BIO-REFINERY WITH SUGAR CO-LOCATION



OPTION 2: «CHEM-CO» – BIO-REFINERY WITH CHEMICAL CO-LOCATION





BIO-PLASTICS INDUSTRY IS STILL IN ITS EARLY STAGES

Plastics: 299 Mio. t/a

Bio-Plastics: 1.6 Mio. t/a

Source: worldwatch institute / european bioplastics (2013)

If you are looking for 5-HMF based products and solutions like PEF plastics you should talk to us

- ✓ 5-HMF is available for research, development and special applications
- ✓ Proven, innovative technology
- ✓ Scalable to match growing market demand
- ✓ Potential high demand from growing bio-based packaging market
- ✓ Many other lucrative segments such as formaldehyde replacement
- ✓ Promising applications in Food, Pharma, Agro, etc.
- ✓ Open Innovation approach to collaborate with partners from the value chain

Thomas M. Kläusli Chief Marketing Officer tk@ava-co2.com

www.ava-co2.com

THE FUTURE OF PLASTICS IS BIO-BASED

Replacement of Formaldehyde in Duroplastics, Thermoplastics and Elastomers

5-HMF + Phenol

→ Phenoplasts

→ Aminoplasts

5-HMF + Urea

Thiourea

Melamin

Cyanamide

Dicyanamide

Diaminohexane

Polyamines

5-HMF + Polyisocyanates

→ Polyurethanes

5-HMF + Butanone

p-Toluenesulfonamide

→ Thermoresistant resins

Pathways from 5-HMF to Polymers containing a Furan-Ring

Furandicarboxylic acid FDCA HO OH	 → Polyesters → PEF (Polyethylenefuranoate) → PBF (Polybutylenefuranoate) → Polycarbonates → PBAF (replacing PBAT) http://www.grandviewresearch.com/industry-analysis/fdca-industry
2,5-Bis(hydroxymethyl)furan	→ Polyesters
DHMF но он	→ Polyurethanes
5-Hydroxymethyl-furan-2-carboxylic acid HFCA	→ Polyester
2,5-Bishydroxymethyltetrahydrofurane	→ Polyesters
	→ Polyurethanes
2,5-Bis(aminomethyl)furan	→ Polyurethanes

Polymers containing C6 Chains

Adipic acid → Polyamide 46, 66, ... → Polyurethan → Polyester → Polyester → Polyester → Resins Adiponitrile → Polyamide 46, 66, ... → Polyurethan → Polyester → Polyester → Resins

→ Polyamide 66, Nylon 6-6

Polymers without Furan-Ring or C6-Chains

Furandicarboxylic acid

→ Polycarbonates

 $\underline{\text{http://www.grandviewresearch.com/industry-analysis/fdca-industry}}$

Replacing Bisphenol A

Levulinic acid

- → Polyacrylate
- → Polycarbonate

Terephthalic acid, p-Xylene

→ PET,
Polyethylenetherephthalate
via Diels-Alder-reaction
ethylene