From the Sugar Platform to biofuels and biochemicals

Luca Bertuccioli

NRP66 Resource Wood – Novel ways in bio-refining of wood

BFH-HAFL, Zollikofen, 5 February 2016

E4tech | Strategic thinking in sustainable energy

E4tech: Strategic thinking in sustainable energy

- International consulting firm, offices in UK and Switzerland
- Focus on sustainable energy
- Established 1997, always independent
- Deep expertise in technology, business and strategy, market assessment, techno-economic modelling, policy support...
- A spectrum of clients from start-ups to global corporations

Hydrogen

Fuel Cells

Enerav

V POICV Energy Innovation

n Capture & Storage Biomass for Heat & Power

Aviation Biofu

Low Carbon Vehicles

Biomass for Heat & Power

Energ

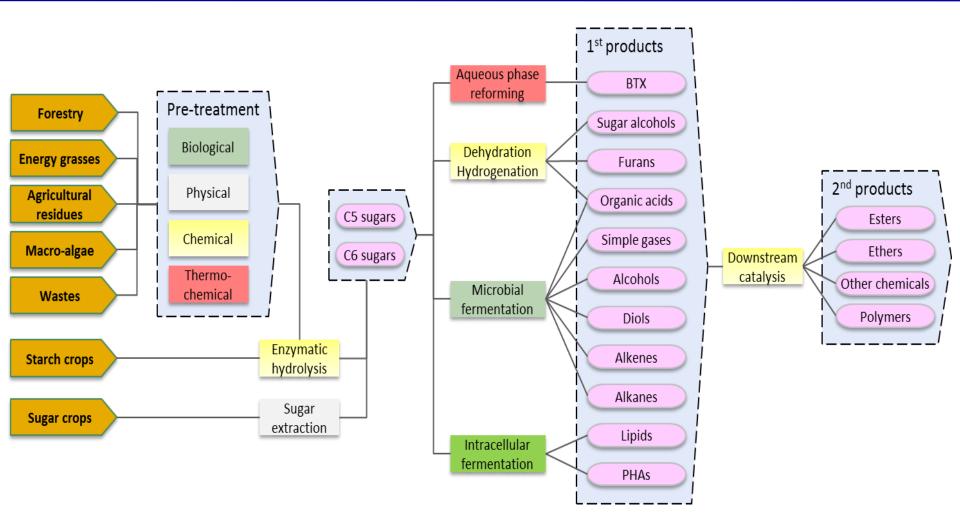
1. Objectives

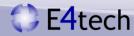
- 2. Pathways
- 3. Development status
- 4. Market size
- 5. Case studies
- 6. EU competitiveness

An evidence base was needed for the sugar platform

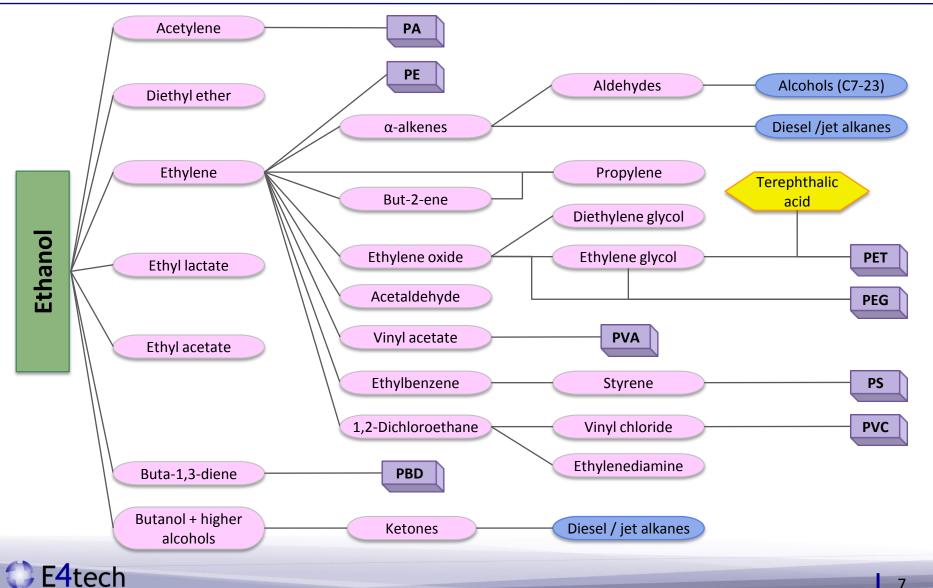
- Numerous promising pathways exist to making biofuels and biochemicals via sugars using different feedstocks and downstream processes
- **DG ENER** commissioned E4tech, RE-CORD and Wageningen UR to assess:
 - technology options, development status, market potential, sustainability, economics and barriers to deployment
- Industry input was gathered via case studies, and workshops
- Final report is to act as an **evidence base** for policymakers and stakeholders to identify opportunities, their key benefits and development needs

http://www.e4tech.com/project/from-the-sugar-platform-to-biofuels-and-biochemical


1. Objectives


2. Pathways

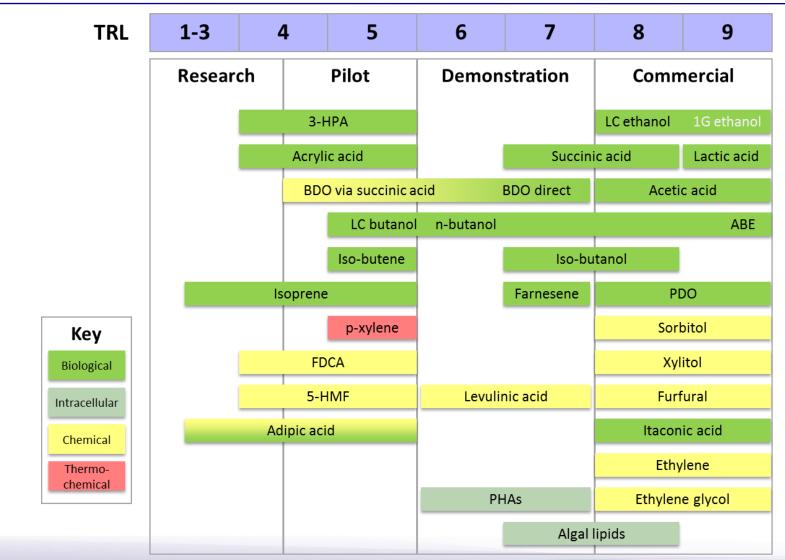
- 3. Development status
- 4. Market size
- 5. Case studies
- 6. EU competitiveness

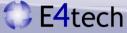


High-level summary of the 94 pathways considered

Ethanol downstream products

- 1. Objectives
- 2. Pathways
- 3. Development status
- 4. Market size
- 5. Case studies
- 6. EU competitiveness


Company database created with 250+ plants, using public data


	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
1							 ktpa	Activi	ty				•		
2	Organisation 🔹 💌	Address 💌	Product	Technology	TRL	# TRL	Scal 🔻	EU 💌	NA 🔻	SA 🔻	Asia 💌	Oth 🔻	Latest updates	Ref 1	• ince •
50	Cargill/Novozymes	Denmark	3-HPA	Fermentation	5	5	0.01		R&D				Cargill and Novozymes announced in 2008 a joint agreement	∞ <u>Ref</u>	Bef
51	Cathay Industrial Biotech	China	Acetone	ABE fermentation	Commercial	8.5	22.5				M		Production facility in Jilin Province has an annual production o	∘p <u>Ref</u>	
52	Cathay Industrial Biotech	China	n-butanol	ABE fermentation	Commercial	8.5	67.5				M		Cathay Industrial Bio produces corn-based n-butanol for che	mi <u>Bef</u>	Bef
53	Central Romana Corporation	Dominican Rep	Furfural	Dehydration	Commercial	8.5	35		м				In the 1950's the present-day world's largest furfural unit was	sts <u>Ref</u>	
-54	Chongqing Bofei Biochemical Pro	China	Lactic acid	Fermentation	Commercial	8.5	75				M		Henan Jindan Lactic Acid Technology and Chongqing Bofei B	iok <u>Ref</u>	
55	Cobalt Technologies	California, USA	Acetone	Fermentation	Pilot	5			R&D				Make n-butanol, and a very small amount of acetone.2011	Bef	
56	Cobalt Technologies	California, USA	n-butanol	Fermentation	Pilot	5	0.08		R&D, P 1.4	Р	P 100		Cobalt Technologies announced its successful scale-up of its	ы <u>Ref</u>	<u>Bef</u>
57	Cobalt Technologies	California, USA	Jet fuel	Dehydration, oligomerisation	R&D	3.5			R&D				2010 Cobalt Technologiesannounced the signature of a Coo	or <u>Bef</u>	Bef
58	Corbion	Netherlands	FDCA	Fermentation	R&D	4		R&D					Corbion is currently looking at FDCA and bought chemical en	gir <u>Ref</u>	Bef
59	Corbion Purac	Netherlands	Lactic acid	Fermentation via HMF	Commercial	8.5	290	D	м	м	м		Plants in the Netherlands, Spain, USA (180ktpa) and 100ktpa	ac <u>Ref</u>	Bef
60	Corbion Purac	Netherlands	Lactide	Fermentation	Commercial	8.5	80	D			M		5ktpa demo plant in Spain, plus 75ktpa (lactide) commercial p	an <u>Ref</u>	Bef
61	Corbion Purac	Netherlands	PLA	From lactide	Pre-commercia	5.5					P 75		Corbion Purac announced in October 2014 that they will make	th <u>Ref</u>	
62	Davy Process Technology	UK	THF	Hydrogenation, deoxidisation	Pilot	5		R&D					Collaboration with Myriant. Successfully made BDO and THF	at <u>Ref</u>	Bef
63	Davy Process Technology	UK	1,4 butanediol (BDO)	Hydrogenation	Pilot	5		R&D					Collaboration with Myriant. Successfully made BDO and THF	at <u>Ref</u>	Bef
64	Deinove	France	n-propanol	Fermentation	2	2		R&D					The DEINOCHEM programme aims to produce a new generat	on <u>Ref</u>	Bef
65	Deinove	France	n-butanol	Fermentation	2	2		R&D					Deinove (Alternext Paris:ALDEI has announced that the award	of <u>Ref</u>	Bef

- Company names, countries
- Products made, process technology used, Technology Readiness Level (TRL)
- Production capacity, locations and type of facilities
- Not fully comprehensive for all products, but covers all the major players
- Most routes still based on 1G sugar and starch crops

TRL progression and the "valley of death" for 25 products

LC pre-treatment is vital to unlocking sugar platform potential, but matching to downstream is key reason for lower TRLs

- Pre-treatment technical obstacles include insufficient separation of cellulose and lignin, formation of inhibitors, high use of chemicals and/or energy, enzyme costs (although falling rapidly), capital costs, and the need to deal with feedstock variability
- Alcohol production needs to lower energy cost of product separation, and overcome micro-organism toxicity to improve product concentrations in the fermentation broth
- **Organic acid** production is focused on reducing unwanted by-products and improving process **selectivity** (particularly for chemical catalytic routes)
- **Biopolymer production** needs high **purity** monomers to ensure on-spec
- Process integration along new technology chains needs optimisation

- 1. Objectives
- 2. Pathways
- 3. Development status
- 4. Market size
- 5. Case studies
- 6. EU competitiveness

Bio-ethanol is by far the largest sugar platform product

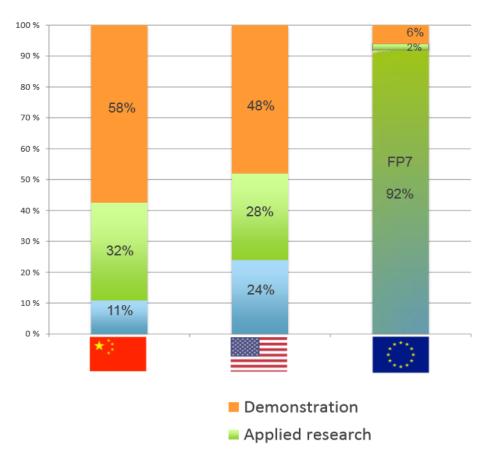
- We collected indicative prices and global production volumes for the selected 25 bio-products (along with their fossil counterparts where applicable):
 - Dominant (~\$58bn/yr): bio-ethanol
 - Big (~\$1bn/yr): n-butanol, acetic acid and lactic acid
 - No fossil alternatives, >\$100m/yr for routes to xylitol, sorbitol and furfural
 - Many small markets for earliest TRL products (<\$1m/yr)
- If economically competitive, many bio-chemicals could grow to exceed the current fossil-based product demand and expand into new markets, replacing other products
- **Crude oil prices** since mid-2014 leave many sugar platform products extremely challenged

- 1. Objectives
- 2. Pathways
- 3. Development status
- 4. Market size
- 5. Case studies
- 6. EU competitiveness

10 case studies selected to highlight EU actors active in attractive markets

- Acrylic, adipic & succinic acids, FDCA, BDO, farnesene, isobutene, PLA, PHAs and PE case studies are standalone ~4 page documents:
 - **Description** of the bio-based product
 - Actors involved in its production (EU and ROW)
 - Value proposition production economics, GHG savings and physical properties. Chemicals market offers major differences to biofuels sector
 - Market outlook and expected growth
- All claimed "viable economic production costs" once at scale (pre-oil crash)
- All have modest GHG savings on 1G sugars, high GHG savings on 2G sugars
- All have either equal quality (drop-in) or enhanced properties (non drop-in)

- 1. Objectives
- 2. Pathways
- 3. Development status
- 4. Market size
- 5. Case studies
- 6. EU competitiveness


EU competitiveness assessed based on 7 criteria vs. US, Brazil and China

Criteria	EU	US	Brazil	China	Notes
Policy	С	А	В	В	US RFS and BioPreferred. Brazil and China have biofuel mandates, but EU lacks long-term policy
Financing	В	А	В	А	Interest rates lowest in China, highest in Brazil DOE and BNDES provide loan guarantees
Public perception & demand	В	В	В	В	Biochemicals yet to suffer ILUC backlash, no sustainability requirements exist yet
R&D activity	А	А	В	В	EU & US have best researchers, hence top locations for labs & pilots
Commercial activity	С	В	С	А	Strongest in China. US leader on demos and LC ethanol. EU focused downstream, Brazil limited
Feedstock availability & cost	В	A	A	В	All regions have significant 1G crops. US and Brazil cheapest LC residues and forestry, China yet to mechanise
Other production costs	С	В	В	A	US highest wages, Brazil highest energy costs, but EU second on both counts. US lowest energy and China lowest wages

EU technology is being deployed abroad

- Easier/safer to invest in plants, and products cheaper to make, in the US, Brazil and China:
 - US guaranteeing \$1.4bn in loans, \$2.5bn more to come
 - Brazil \$0.4bn low interest loans + \$0.6bn more by 2018
- EU still focusing on R&D
- NER300 funds (€127m) awarded to 4 advanced ethanol plants, only 1 built to date (Crescentino)
- **BBI** set up with €3.7bn for demo and flagships – yet to kick in

In summary

- Wide range of potential chemicals can be made from LC sugars or LC ethanol
- TRL of LC routes generally at least 1-2 steps behind 1G sugars
- Partnerships starting to form with pilots and toll demos of LC sugars from the likes of Biochemtex
- Main difficulty is matching LC sugar purities with downstream needs
- Value proposition is vital in biochemicals space:
 - Drop-ins compete on price, and only sometimes green credentials
 - Non drop-ins often have superior properties or market niches
- EU faces particular challenges over production cost competitiveness compared to ROW, and lack of clear long-term policy for the bioeconomy

Thank you for your attention!

luca.bertuccioli@e4tech.com

C E4tech | Strategic thinking in sustainable energy

E4tech – strategic thinking in sustainable energy

For more information please visit our website:

www.E4tech.com

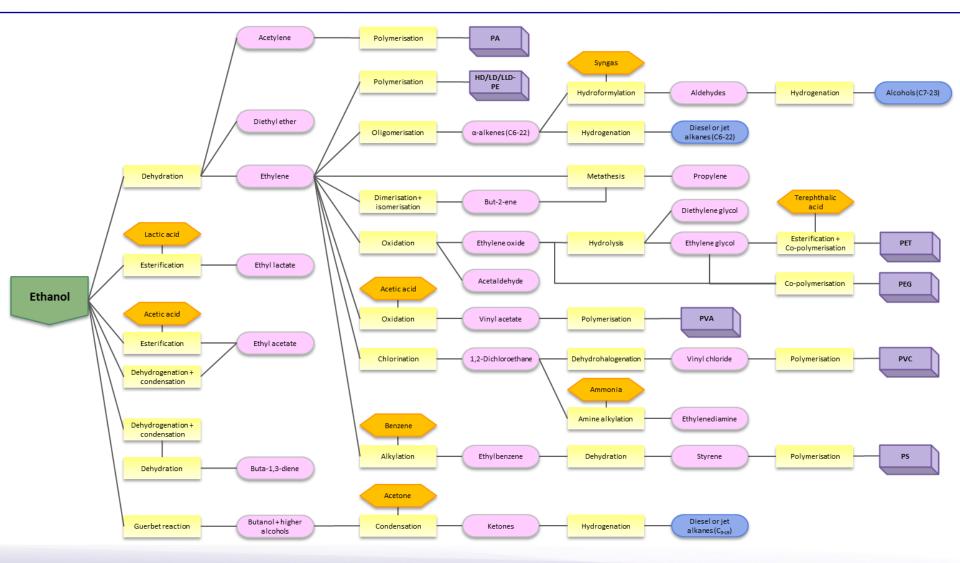
Or contact us in London or Lausanne:

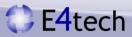
E4tech (UK) Ltd

83, Victoria Street London SW1H 0HW United Kingdom +44 (0)20 3008 6140

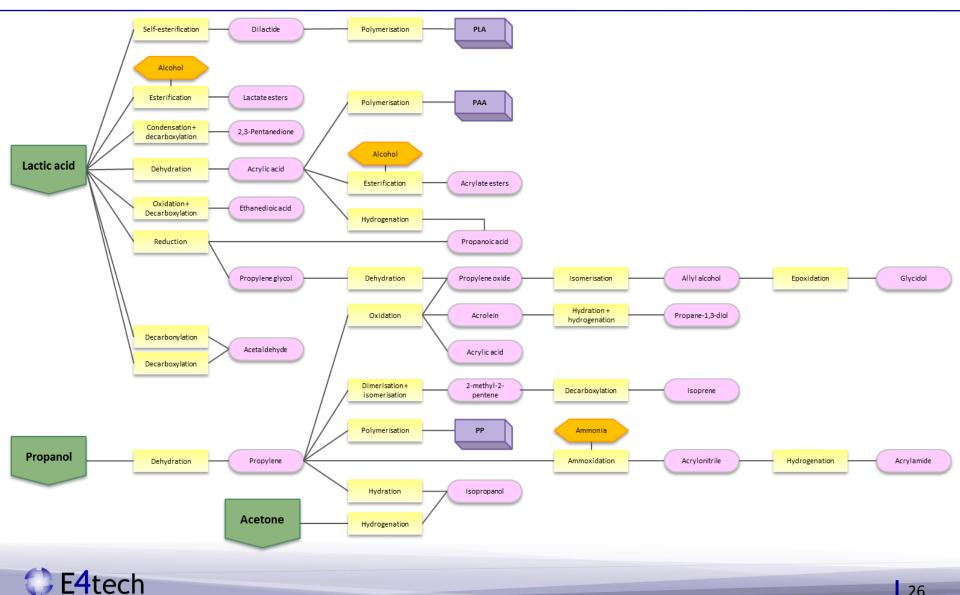
E4tech Sàrl

Av. Juste-Olivier 2 1006 Lausanne Switzerland +41 (0)21 331 15 70

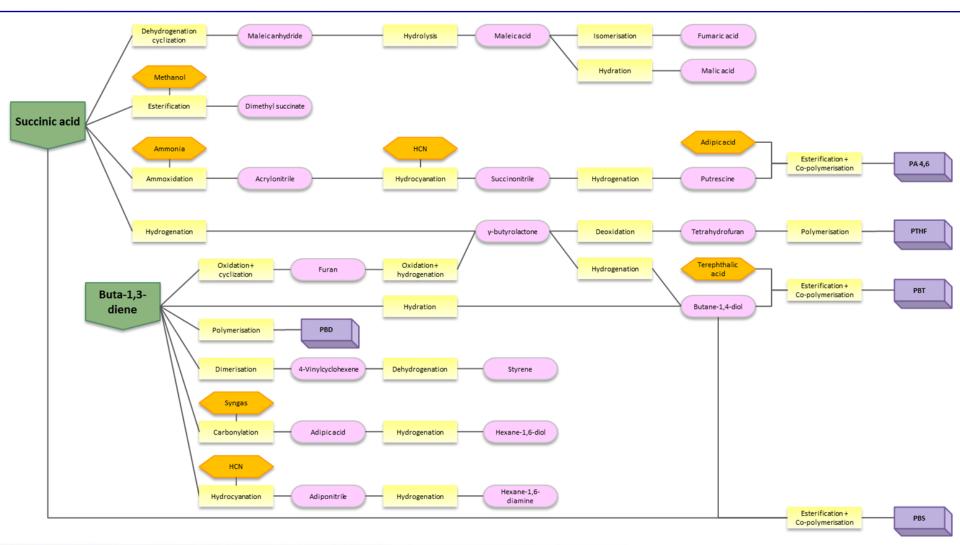

enquiries@e4tech.com

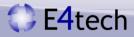


Backup slides for Q&A


C E4tech | Strategic thinking in sustainable energy

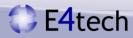
Ethanol pathways – detailed example



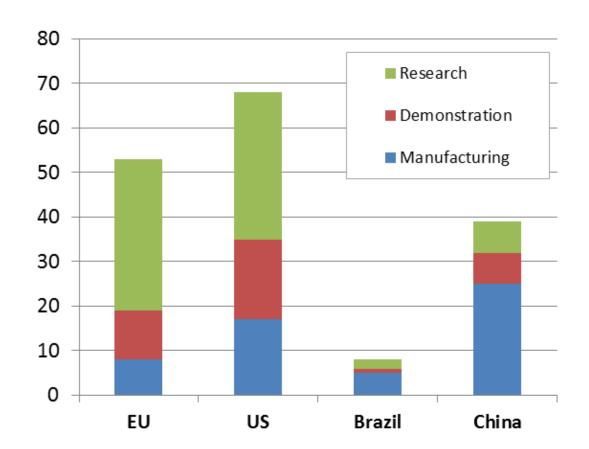


C3 pathways – detailed example

C4 pathways – detailed example


Technology Readiness Level (TRL) definitions

TRL	Plant stage	Definition			
1	Basic research	Principles postulated & observed but no experimental proof available			
2	Technology formulation	Concept and application have been formulated			
3	Applied research	First laboratory tests completed; proof of concept			
4	Small scale prototype	Built in a laboratory environment ("ugly" prototype)			
5	Large scale prototype	Tested in intended environment			
6	Prototype system	Tested in intended environment close to expected performance			
7	Demonstration system	Operating in operational environment at pre-commercial scale			
8	First of a kind commercial system	Manufacturing issues solved			
9	Full commercial application	Technology available for consumers			


Feedstock availability & cost, plus labour and energy costs vary widely between regions

EU focus on R&D backed up by evidence from the company database

- Most R&D labs and pilot plants are located in Europe and US (+Canada)
- US has significantly more demonstration facilities than EU
- Asia (mainly China) has a good manufacturing base of high TRL products
- South America has a few early commercial projects

Non-technical barriers examined by Bio-TIC project

- Bio-TIC project has done considerable work in understanding this area and preparing recommendations for improvement
- Categories of non-technical barriers have been prioritised into their importance to the sugar platform as follows:
 - 1. Demand side policy (most important)
 - 2. Public perception & communication
 - 3. Investment & financing
 - 4. Feedstock
 - 5. Other barriers (least important)

Stakeholder suggestions for potential policy improvements

- Longer-term **stability** of mandates
- Setting biomass use between fuels and chemicals on a level playing field
- Incentivising biomass production
- Creating a clear Europe-wide communication campaign
- Dis-incentivising **fossil**-derived products
- Improving access to capital and loan guarantees
- **Simplifying** available funding mechanisms

